

Dynamic Reserves: Tariff changes discussion

Ashley Ferrer Energy Market Design Matthew Musto Kanchan Upadhyay Ting Dai Market Solutions Engineering

November 27, 2023

Background

Agenda

- Background
- Dynamic Reserve Criteria discussion
- Draft Tariff
- Next Steps

Previous Presentations

Title/Topic	Link
March 7, 2023 MIWG	https://www.nyiso.com/documents/20142/36639552/Dynamic%20Reserves%20- %2020230307%20MIWG_final.pdf/a29ccf5d-4c26-5cbf-0103-5bece7edb276
March 31, 2023 MIWG	https://www.nyiso.com/documents/20142/36828420/MIWG%20March%2031%20Dynamic%20Reserves%20Postings %20and%20LMP.pdf/81c35384-2438-1e03-e021-6e7ecc18f9d7
September 5, 2023 MIWG	https://www.nyiso.com/documents/20142/39768278/2%2020230905%20MIWG%20- %20Dynamic%20Reserves.pdf/d58e28ab-de87-7a86-4296-a8c21f7c764f
September 14, 2023 MIWG	https://www.nyiso.com/documents/20142/40004830/20230914%20MIWG%20- %20Dynamic%20Reserves.pdf/a1c6d806-5b67-a8fc-9d04-a1669a926f54
September 18, 2023 MIWG	https://www.nyiso.com/documents/20142/40044890/5%2020230918%20MIWG%20- %20Dynamic%20Reserves.pdf/0b1b7e63-737d-5bee-4abc-be65c234aa3b
September 26, 2023 MIWG	https://www.nyiso.com/documents/20142/40204141/4%2020230926%20MIWG%20- %20Dynamic%20Reserves.pdf/90e8c0b2-aeaf-0935-5c4e-bd260c948f3c
October 3, 2023 MIWG	https://www.nyiso.com/documents/20142/40342797/20231003%20MIWG%20- %20Dynamic%20Reserves.pdf/51657652-ac7e-c9e2-ed5f-85b52e7e49f7
October 12, 2023 MIWG	https://www.nyiso.com/documents/20142/40559142/Dynamic%20Reserves.pdf/a17ba0a7-8e59-53b9-e028- 4942f595c2f1

Previous Presentations

Title/Topic	Link	
October 19, 2023 MIWG	https://www.nyiso.com/documents/20142/40696384/20231019%20MIWG%20- %20Dynamic%20Reserves.pdf/ef4371c2-5bff-7adb-5871-1d77d6fa98eb	
November 8, 2023 MIWG	https://www.nyiso.com/documents/20142/41049783/20231108%20MIWG%20- %20Dynamic%20Reserves.pdf/e38b6d72-aa3f-69f3-b43f-8b3591b0e314	
November 17, 2023 MIWG	https://www.nyiso.com/documents/20142/41273741/20231117%20MIWG%20- %20Dynamic%20Reserves_final.pdf/d18195bc-c940-1a1f-51c1-3220a02c23bd	

Dynamic Reserve criteria: Based on Stakeholder Feedback

Reserve Criteria (10 Spin)

	NYCA	East	SENY	NYC	u
10-Minute Spinning Reserves Static Value Reliability Rule Dynamic Reserves Calculation	1/2*A = 655 MW 10-minute spinning reserve is equal to at least one-half of the 10-minute total reserve. [NYSRC Reliability Rules, Section E] DR: ½ Largest Schedule (The Largest Schedule is formulated as the capability of the largest generator, as the combined energy, regulation, 10-Minute	1/4*A = 330 MW* 10-minute spinning reserve is based on the NERC requirement to plan to meet energy reserve requirements, including the deliverability/capability for any single Contingency and the NPCC requirement that reserves be distributed to ensure that they can be used without exceeding individual element ratings or transfer limitations. [NERC TOP-002- 2.1b; NPCC Reliability Directory No. 5, Section 5.6]	0	0	0
	Spin, 10-Minute Total, 30-Minute Total schedules)	Hold a portion of 10-min Total requirements as Spin. Please refer to 10-min Total requirement criteria on next slide a. For one transmission contingency (Gen Energy + Gen 10S Reserves/0.5 + Load) * Shift Factor <= Central East Voltage Collapse(VC) limit - (N-1) Derate b. For one Generation contingency Gen Energy + Gen 10S Reserves/0.5 - Largest Gen Schedule + Load) * Shift Factor <= Central East Voltage Collapse(VC) limit			

https://www.nyiso.com/documents/20142/3694424/Locational-Reserves-Requirements.pdf https://www.nysrc.org/wp-content/uploads/2023/07/RRC-Manual-V46-final.pdf

Reserve Criteria (10 Total)

	NYCA	East	SENY	NYC	u
10-Minute	A = 1310 MW	1200 MW	0	500 MW	1/10*East = 120*
Total Reserves	10-minute total reserve is equal to	10-minute total reserve is based on		10-minute total reserve is based	[NERC TOP-002-2.1b;
	the operating capability loss	Reliability Rules that require immediate		on Reliability Rules that require	NPCC Reliability Directory
Static Value	caused by the most severe	measures (activation of EAST 10-minute		a calculated percentage of the	No. 5, Section 5.6]
	contingency under normal transfer	reserves) be applied to bring loadings on		NYCA 10-minute total reserve	
Reliability Rule	conditions. [NYSRC Reliability	an internal NY transfer interface to within		requirement be procured within	
	Rules, Section E]	limits in 15 minutes. [NYSRC Reliability		NYC. [NYSRC Reliability Rules,	
Dynamic		Rules, Section D]		Section G] During Thunderstorm	
Reserves	DR: Largest Schedule			Alerts, will be reduced to zero.	
Calculation		a. Hold enough 10-min Total reserves		Held an avide 40 min Tatal	
		such that all modelled EAST Interface lines		Hold enough 10-min Total	
		East VC limit in 10 minutes following one		NVC Interface lines can be	
		transmission contingency that can derate		brought down to LTE in 10	
		the limit		minutes following the one	
		the mint		transmission and generation	
		(Gen Energy + Gen 10T Reserves + Load)		contingency in NYC	
		* Shift Factor <= Central East Voltage		contailingentey in the	
		Collapse(VC) limit – (N-1) Derate		a. For one transmission	
				contingency:	
		b. Hold enough 10-min Total reserves		(Gen Energy + Gen 10T Reserves	
		such that all modelled EAST Interface lines		+ Load) * Shift Factor <= LTE	
		can be brought down to the Central East		limit	
		VC limit following one generation			
		contingency		b. For one generation	
				contingency:	
		(Gen Energy + Gen 10T Reserves –		(Gen Energy + Gen 10T Reserves	
		Largest Gen Schedule + Load) * Shift		- Largest Gen Schedule + Load)	
		Factor <= Central East Voltage		* Shift Factor <= LTE limit	
		Collapse(VC) limit			
					🛛 🛑 New York I\$C
		[

Reserve Criteria (30 Total)

	NYCA	East	SENY
30-Minute Total	2*A = 2620 MW	1200 MW	1300-1800
Reserves	30-minute total reserve is equal		
Ctatia Value	to two times the 10-minute	Hold 30-Minute total reserve to bring loadings on an internal NY transfer	30-minute total reserve is, depending on the hour, based on
Static value	operating capability loss caused	Reliability Directory No. 5. Section 5.61	transmission circuit loading to Emergency or Normal Transfer
Reliability Rule	by the most severe contingency	Reliability Directory No. 5, Section 5.0]	Operating Criteria within 30 minutes of the contingency.
	under normal transfer conditions.		
Dynamic	[NYSRC Reliability Rules, Section	a. Hold enough 30-min Total reserves such that all modelled EAST	Hold enough 30-min Total reserves such that all modelled
Reserves	E]	Interface lines can be brought down to the lower Central East VC limit in	SENY Interface lines can be operated to Normal Transfer
Calculation	nd	30-minutes following two transmission contingencies. In DA, the Load	criteria following one transmission or one generation
	DAM : Largest Schedule + 2	considered for the calculation would be higher of Scheduled and	contingency in SENY. In DA, the Load considered for the
	Eargest Schedule + max(0,	Forecast load:	calculation would be higher of Scheduled and Forecast load:
		(Gen Energy + Gen 30T Reserves + Load) * Shift Factor <= Central East	a. For one transmission contingency:
	RTM : Largest Schedule + 2 nd Largest Schedule	Voltage Collapse(VC) limit – (N-2) Derate	(Gen Energy + Gen 30T Reserves + Load) * Shift Factor <= Normal Limit
		b. Hold enough 30-min Total reserves such that all modelled EAST Interface	
		lines can be brought down to the Central East VC limit in 30-minutes	b. For one generation contingency:
		following two generation contingencies. In DA, the Load considered for the	(Gen Energy + Gen 30T Reserves –Largest Schedule+ Load) *
		calculation would be higher of Scheduled and Forecast load:	Shift Factor <= Normal Limit
		(Gen Energy + Gen 30T Reserves - Largest Schedule – Second Largest	c. For two transmission contingencies:
		Schedule + Load) * Shift Factor <= Central East Voltage Collapse(VC) limit	(Gen Energy + Gen 30T Reserves + Load) * Shift Factor <= LTE Limit
		c. Hold enough 30-min Total reserves such that all modelled EAST Interface	d. For two generation contingencies:
		lines can be brought down to the Central East VC limit in 30-minutes	(Gen Energy + Gen 30T Reserves – Largest Schedule – Second
		tollowing one transmission and one generation contingency. In DA, the Load	Largest Schedule + Load) * Shift Factor <= LTE Limit
		load:	e. For a combination of one transmission and one generation
			contingency:
		(Gen Energy + Gen 30T Reserves - Largest Schedule + Load) * Shift Factor	(Gen Energy + Gen 30T Reserves - Largest Schedule + Load)
		<= Central East Voltage Collapse(VC) limit – (N-1) Derate	* Shift Factor <= LTE Limit 🛛 🚔 New Yor
			· · · · · · · · · · · · · · · · · · ·

Reserve Criteria (30 Total) cont'd

	NYC	L
30-Minute Total Reserves	1000 MW	270-540 MW
	30-minute total reserve is based on Reliability Rules that require the	[NYSRC Reliability Rules, Section D]
Static Value	ability to bring transmission line loadings to Normal Operating Criteria	
	within 30 minutes following a contingency. [NYSRC Reliability Rules,	Hold enough 30-min Total reserves such that all modelled LI Interface
Reliability Rule	Section C] During Thunderstorm Alerts, will be reduced to zero.	lines can be operated to Normal Transfer criteria following one
		transmission or one generation contingency in in LI. In DA, the Load
Dynamic Reserves Calculation	Hold enough 30-min Total reserves such that all modelled NYC Interface	considered for the calculation would be higher of Scheduled and
	lines can be operated to Normal Transfer criteria following one	Forecast load:
	transmission of one generation contingency in in NYC. In DA, the Load	a Ear and transmission contingency
	Ecrecast load:	d. FOI ONE LIGHTSHIPSION CONTINUENCY. (Con Energy + Con 30T Percenter + Load) * Shift Factor $\leq =$ Normal
	Torcoastioud.	
	a. For one transmission contingency:	Linte
	(Gen Energy + Gen 30T Reserves + Load) * Shift Factor <= Normal Limit	b. For one generation contingency:
		(Gen Energy + Gen 30T Reserves - Largest Schedule+ Load) * Shift
	b. For one generation contingency:	Factor <= Normal Limit
	(Gen Energy + Gen 30T Reserves -Largest Schedule+ Load) * Shift	
	Factor <= Normal Limit	c. For two transmission contingencies:
		(Gen Energy + Gen 30T Reserves + Load) * Shift Factor <= LTE Limit
	c. For two transmission contingencies:	
	(Gen Energy + Gen 30T Reserves + Load) * Shift Factor <= LTE Limit	d. For two generation contingencies:
		(Gen Energy + Gen 30T Reserves – Largest Schedule – Second Largest
	d. For two generation contingencies:	Schedule + Load) * Shift Factor <= LTE Limit
	(Gen Energy + Gen 301 Reserves - Largest Schedule - Second Largest	- Four combination of an etanomical and and structure
	Schedule + Load) ^ Shift Factor <= LTE Limit	e. For a combination of one transmission and one generation
	e For a combination of one transmission and one generation	(Gen Energy + Gen 30T Reserves - Largest Schedule + Load) * Shift
	contingency.	Factor <= 1 TF Limit
	(Gen Energy + Gen 30T Reserves – Largest Schedule + Load) * Shift	
	Factor <= LTE Limit	law Vork I

Reserve Criteria Summary

- Dynamic Reserve design aligns with the criteria used to procure Operating reserves today
 - NYCA level requirement will ensures enough 10-min reserves to secure for loss of gen with largest schedule. 30-min reserve requirement will ensure enough reserves to replenish the 10-min reserve requirement following the largest contingency
 - Locational 10-min reserve requirement will ensure appropriate distribution of 10-min reserves such that loadings on transmission circuits/interface are brought down to appropriate limits in 15-minutes following a contingency
 - Locational 30-min reserve requirement will ensure appropriate distribution of 30-min reserves to ensure the ability to bring such that loadings on transmission circuits/interface to Normal Operating criteria within 30-minutes following a contingency

Draft Tariff Revisions

Draft Tariff Revisions: Summary of Substantive Draft Tariff Revisions

- NYISO acknowledges the feedback received at Nov 17th MIWG and is working on addressing/discussing it. Any changes to tariff language based on that will be discussed at a later MIWG.
- MST 2.5
 - Minor edits to the definition of Expected EDRP/SCR MW
- MST 2.12
 - Included definition for Locational Marginal Operating Reserve Prices ("LMORP")
- MST 4.2
 - Edits to section 4.2.3
- MST 15.4
 - Edits based on Stakeholder feedback
 - Added clarification on the application of Operating Reserve demand curves in multiple sections
- MST 17.1.1
 - Minor edits to provide additional clarification
- 0ATT 6.5
 - Incorporated changes to Section 6.5.1 describing Operating Reserve Charges
 - Added a new Section 6.5.2 describing "Forecast Reserve Charge"

Next Steps

Next Steps

- The deliverable for 2023 is Market Design Complete
- Timeline to completion of MDC
 - Review market design elements and present additional examples at December MIWGs
 - Present MDC and tariff at December BIC
- NYISO will continue prototyping and testing the proposed functionality through early 2024 and will return to stakeholders should any issues be identified.
- Per the 2023 Market Vision, these concepts are expected to be deployed in 2026, assuming prototyping and testing are successful.

Questions?

Our Mission & Vision

 \checkmark

Mission

Ensure power system reliability and competitive markets for New York in a clean energy future

Vision

Working together with stakeholders to build the cleanest, most reliable electric system in the nation

